Soil Testing (Garden Math)

Get a soil test!

- Same:
- Variety
- Seed pack
- Planting day
- Planting person
- Planting Depth
- Different: pH
- Green plant: 6.1
- Yellow plant: 5.3

Nutrient Availability

https://growappalachia.berea.edu/2019/05/02/feeding-your-plants/

Macro Nutrients

- Nitrogen
- Adequate nitrogen gives plants vigorous growth, green color, general health
- Excessive nitrogen increases disease problems, reduces general vigor, reduces root zone and can burn plants
- Excessive nitrogen leaches out of the soil into waterways causing algae bloom and fish die-off
- Phosphorus
- Adequate phosphorus promotes good root growth, flowering, and winter hardiness
- Excessive phosphorus can hinder the plants' ability to absorb nutrients by inhibiting mycorrhizal growth and competing for the plant's uptake of other nutrients
- Excessive phosphorus can leach out of the soil into waterways causing algae bloom and fish die-off
- Potassium
- Adequate potassium improves wear tolerance, heat and cold tolerance, stolon and rhizome growth and rooting
- Excessive potassium may interfere with the plants' ability to absorb nitrogen and some micronutrients
- Excessive potassium is not an environmental hazard

Micro Nutrients

- Secondary nutrients
- Calcium - soil gets this when you add calcitic lime
- Magnesium - soil gets this when you add dolomitic lime
- Sulphur - not generally a problem in the northeast
- Other micronutrients
- Iron
- Manganese
- Boron
- Copper
- Zinc
- Chlorine
- Molybdenum
- Nickel

https://ag.umass.edu/services/soil-plant-nutrient-testing-laboratory/ordering-information-forms

UMass Soil \& Plant Nutrient Testing Laboratory

Paige Laboratory, Room 203
161 Holdsworth Way
Amherst, MA 01003
(413) 545-2311
soiltest@umass.edu
http://soiltest.umass.edu

USE THIS FORM FOR ROUTINE SOIL ANALYSIS - HOME GROUNDS AND GARDENS

Visit our website to download a copy of Sampling Instructions for Routine Soil Analysis, which includes a description of routine and optional soil tests offered. Send your sample(s), completed submission form and payment to the address listed above. Enclose check payable to UMass for \$20 for each sample plus additional fees for optional tests requested below.

Main Contact	Send Copy to	Method of Receiving Results
Name:	Name:	
Business Name:	Business Name:	US Mail (Please include
Street Address:	Street Address:	\$2 per order for postage
City, State, Zip	City, State, Zip:	\& handling)
Phone:	Phone:	Email
Email Address:	Email Address:	

LAB \# (Leave blank)	Sample ID (You create this)	Approx. area Represented by Sample (Sq. ft. or Acres)	Crop Code, limit of 3 (See reverse side of this form)	Routine Analysis (\$20.00)	Organic Matter (\$6.00)	Soluble Salts (\$6.00)	Nitrate $(\$ 8.00)$
				\checkmark	\square	\square	\square
				\checkmark	\square	\square	\square
				\checkmark	\square	\square	\square
				\checkmark	\square	\square	\square
				\checkmark	\square	\square	\square
				\checkmark	\square	\square	\square

Office Use Only	
Received	Due
Check\#	PO\#
Cash	Date

"Routine Soil Analysis - Order form for Home Grounds and Gardening"

Crop Codes for Home Grounds and Gardens

To receive lime and nutrient recommendations on your test report, you must specify the appropriate Crop Code(s) on your soil sample submission form. These recommendations are based on analytical results for your sample. Please select up to three Crop Codes that best describes your management objectives from the list below.

Description Crop Code	
Lawn-New Establishment.	HA1
Lawn-Maintenance	... HA2
Home Gardens, Trees and Shrubs - Recommendations given per 100 sq. ft.	
Description	Crop Code
Home Vegetable Garden.	HB1
Home Vegetable Garden, Asparagus only	HB1A
Flowers, Roses, \& Herbs	HB3E
Deciduous Trees, Shrubs \& Vines-New Establishment	HC1E
Deciduous Trees, Shrubs \& Vines-Maintenance	HC1M
Needle Leaf Trees \& Shrubs-New Establishment	HC2E
Needle Leaf Trees \& Shrubs-Maintenance	HC2M
Acid-loving Trees, Shrubs, \& Groundcover-New Establishment.	HC3E
Acid-loving Trees, Shrubs, \& Groundcover-Maintenance	HC3M
Home Blueberries-New Establishment.	HD1E
Home Blueberries-Maintenance.	HD1M
Home Brambles-New Establishment	HD2E
Home Brambles-Maintenance	HD2M
Home Strawberries-New Establishment	HD3E
Home Strawberries-Maintenance	HD3M
Home Grapes, American Varieties-New Establishment	HD4E
Home Grapes, American Varieties-Maintenance.	HD4M
Home Grapes, European Varieties-New Establishment.	HD5E
Home Grapes, European Varieties-Maintenance.	HD5M

You can use up to 3 of these crop codes for each soil test sample.

Top of $1^{\text {st }}$ page of report

UMass Extension

Soil and Plant Tissue Testing Laboratory 203 Paige Laboratory 161 Holdsworth Way University of Massachusetts Amherst, MA 01003
Phone: (413) 545-2311
e-mail: soiltest@umass.edu
website: soiltest.umass.edu

Soil Test Report
Prepared For:
Gretel Anspach
gretel@alum.mit.edu

Sample Information:

kab Number: S150515-907
Area Sampled: 2000 sq ft
Received: 5/15/2015
Reported: 6/5/2015

This is the code you used to identify your soil test when you sent it in. Make sure you write down what part of your property it refers to!

Middle of $1^{\text {st }}$ page - what's in your soil

Check lead level, ignore the rest

Bottom of $1^{\text {st }}$ page - how it compares

Soil Test Interpretation

Nutrient	Very Low	Low	Optimum	Above Optimum
Phosphorus (P):				
Potassium (K):				
Calcium (Ca):				
Magnesium (Mg):				

1 of 2
Sample ID: Tre
Lab Number S150515-907

$2^{\text {nd }}$ page - what to do!

Recommendations for Deciduous Trees, Shrubs \& Vines-Maintenance

Limestone (Target pH of 6.0) \quad Nitrogen, $\mathrm{N} \quad$ Phosphorus, P2O5 \quad Potassium, K2O

5	.1-. 2	0.25					

[^0]
General References:

Interpreting Your Soil Test Results
For current information and order forms, please visit
$\mathrm{http}: / /$ soiltestumass.edu/fact-sheet//interpreting-vour-soil-test-results
http://soiltestumass.edul

Recommendation: Add 5 \# lime
.1-. 2 \# nitrogen
. 25 \# phosphorus
. 25 \# potassium

Either - Google your address

Right click and select "Measure distance"

Directions from here

 Directions to here What's here?Search nearby

Print

Add a missing place Add your business
Report a data problem
Measure distance

Google

Notice pop-up. Getting the first point right can be fiddly

Then it gets easier

Close the path to get the area

Or - Google your address

Draw shapes

Doesn't have to be a perfect fit
Can eyeball "cut-outs" - e.g. probably half of the circle is lawn

Measure key dimensions

Standard math formulae

Area $=$ height x
width

Area $=1 / 2 \times$ height \times width (a triangle is half a rectangle)

Area $=3.14 \times 1 / 4 \times$ height x width

Compute areas of shapes

- Front lawn:
- Rectangle A: $13^{\prime} \times 9^{\prime}=117^{\prime}$
- Rectangle B: 15' x 17' = 255^{\prime}
- Rectangle C: $52^{\prime} \times 18^{\prime}=936^{\prime}$
- Triangle D: $1 / 2 \times 12^{\prime} \times 18^{\prime}=108^{\prime}$
- Total Front Lawn Area: 1416 (call it 1400')
- Back lawn:
- Oval E: $3.14 \times 1 / 4 \times 63^{\prime} \times 90^{\prime}=4451^{\prime}$
- Back lawn is probably half that circle $=2225$ '
- 2200 is probably close enough

Lime

- Recommendation: 5\# lime/100 square feet
- Front lawn: 1400 square feet -> 70\# of lime
- (5 * 1400 / 100)
- Back lawn: 2200 square feet -> 110\# of lime

$$
-\left(5^{*} 2200 / 100=110\right)
$$

Fertilizer

- 3 numbers on each bag
- N-P-K
- Nitrogen - Phosphorus Potassium (always in that order)
- Numbers are the percent of that element in the fertilizer by weight
- 50 pound bag of 14-14-14
- 14\% nitrogen - 7\# nitrogen
- 14\% phosphorus - 7\# phosphorus
- 14\% potassium - 7\# potassium
- 30 pound bag of 12-32-06
- 12% nitrogen - $3.6 \#$ nitrogen
- 32\% phosphorus - 9.6\# phosphorus
- 6% potassium - 1.8\# potassium

Fertilizer

	Nitrogen	Phosphorus	Potassium
Recommendation	$.1-.2 \# / 100$ sq. ft.	$.25 \# / 100 \mathrm{sq} . \mathrm{ft}$.	$.25 \# / 100 \mathrm{sq} / \mathrm{ft}$
Front Yard (1400 sq. ft.)	$1.4-2.8 \#$ total	$3.5 \#$ total	$3.5 \#$ total
Back Yard (2200 sq. ft.)	$2.2-4.4 \#$ total	$5.5 \#$ total	$5.5 \#$ total

- Can add 3 elements separately
- Easier to add balanced fertilizer

Product	Weight / Cost	Front Bags	Front NPK	Back Bags	Back NPK	Total Weight	Total Cost
$10-10-10$ (synthetic)	40\# for $\$ 28.99$.75 bags	3-3-3	1.25 bags	5-5-5	80\#	\$57.98
$3-4-4$ (organic)	27\# for $\$ 22.97$	3.5 bags	2.8-3.8-3.8	5.5 bags	4.5-5.9-5.9	243\#	\$206.73
1-1-1 (steer manure)	25\# for \$5.97	12 bags	3-3-3	20 bags	5-5-5	800\#	\$191.04

Organic versus Synthetic Fertilizer

- Synthetic Fertilizers
- Generally only N-P-K
- Generally fast release, high dose - easy to overdose the plant and the land
- Organic Fertilizers
- Generally N-P-K plus others
- Generally medium release, low dose - harder to overdose (but not impossible)
- Soil Amendments (e.g. manure)
- N-P-K generally not known
- Broad range of nutrients available in some
- Generally slow release, low dose - require microorganisms to break down (temperature dependent)

Experiments show using exclusively synthetic fertilizers is worse for soil than including soil amendments - silent on the subject of organic fertilizers.

Mulch

- Oval F: $3.14 \times 1 / 4 \times 11^{\prime} \times 15^{\prime}=130 \mathrm{sq} \mathrm{ft}$
- Oval G: $3.14 \times 1 / 4 \times 11^{\prime} \times 15^{\prime}=130 \mathrm{sq} \mathrm{ft}$
- Half of Oval H: $1 / 2 \times 3.14 \times 1 / 4 \times 22^{\prime} \times 27^{\prime}=233 \mathrm{sq} \mathrm{ft}$
- Total bed area: 493 sq ft (500 sq ft)

Mulch math

- How much mulch do you need to cover 500 square feet 2" deep?
- Volume needed (cubic feet)
- Area x depth
- 500 square feet x 2 inches (but can't multiply inches by feet)
-1 foot $=12^{\prime \prime}$, so $2^{\prime \prime}=2 / 12$ of a foot (1/6)
- 500 square feet $\times 1 / 6$ foot $=83$ cubic feet
- Volume needed (cubic yards)
-1 cubic yard $=27$ cubic feet ($3^{\prime} \times 3^{\prime} \times 3^{\prime}$)
-83 cubic feet $=83 / 27$ cubic $y a r d s=3$ cubic yards

Questions?

[^0]: Comments:
 -For instructions on converting nutrient recommendations to fertilizer applications in home gardens, lawns and landscapes, see Reference "Step-by-Step Fertilizer Guide for Home Grounds and Gardening" (listed below).
 -Maintaining a 2 to 4 inch organic mulch will help conserve moisture and improve soil conditions.

 ## References:

 Home Lawn and Garden Information http://as.umass.edu/interest-areass/home-lawn-garden

 Step-by-Step Fertilizer Guide for Home Grounds and
 httpss//soiltest.umas5.eduffact-sheets/step-step-fertilizer-suide-home-grounds-and-sardening Gardening

